Skip to content

William Harvey, De motu cordis (1628)

Read the Willis translation online at archive.org or download from Google books for free.

THE MOST SALIENT EXCERPTS
(if you don’t want to tackle the whole)

William Harvey
De motu cordis
(“An Anatomical Disquisition on the Motion of the Heart and Blood in Animals”)
translated by Robert Willis

INTRODUCTION

As we are about to discuss the motion, action, and use of the heart and arteries, it is imperative on us first to state what has been thought of these things by others in their writings, and what has been held by the vulgar and by tradition, in order that what is true may be confirmed, and what is false set right by dissection, multiplied experience, and accurate observation.

Almost all anatomists, physicians, and philosophers, up to the present time, have supposed, with Galen, that the object of the pulse was the same as that of respiration, and only differed in one particular, this being conceived to depend on the animal, the respiration on the vital faculty; the two, in all other respects, whether with reference to purpose or to motion, comporting themselves alike…But as the structure and movements of the heart differ from those of the lungs, and the motions of the arteries from those of the chest, so seems it likely that other ends and offices will thence arise, and that the pulsations and uses of the heart, likewise of the arteries, will differ in many respects from the heavings and uses of the chest and lungs…

CHAPTER I

THE AUTHOR’S MOTIVES FOR WRITING.

When I first gave my mind to vivisections, as a means of discovering the motions and uses of the heart, and sought to discover these from actual inspection, and not from the writings of others, I found the task so truly arduous, so full of difficulties, that I was almost tempted to think, with Fracastorius, that the motion of the heart was only to be comprehended by God. For I could neither rightly perceive at first when the systole and when the diastole took place, nor when and where dilatation and contraction occurred, by reason of the rapidity of the motion, which in many animals is accomplished in the twinkling of an eye, coming and going like a flash of lightning ; so that the systole presented itself to me now from this point, now from that; the diastole the same; and then everything was reversed, the motions occurring, as it seemed, variously and confusedly together. My mind was therefore greatly unsettled, nor did I know what I should myself conclude, nor what believe from others; I was not surprised that Andreas Laurentius should have said that the motion of the heart was as perplexing as the flux and reflux of Euripus had appeared to Aristotle.

At length, and by using greater and daily diligence, having frequent recourse to vivisections, employing a variety of animals for the purpose, and collating numerous observations, I thought that I had attained to the truth, that I should extricate myself and escape from this labyrinth, and that I had discovered what I so much desired, both the motion and the use of the heart and arteries; since which time I have not hesitated to expose my views upon these subjects, not only in private to my friends, but also in public, in my anatomical lectures, after the manner of the Academy of old.

These views, as usual, pleased some more, others less ; some chid and calumniated me, and laid it to me as a crime that I had dared to depart from the precepts and opinion of all anatomists; others desired further explanations of the novelties, which they said were both worthy of consideration, and might perchance be found of signal use. At length, yielding to the requests of my friends, that all might be made participators in my labours, and partly moved by the envy of others, who, receiving my views with uncandid minds and understanding them indifferently, have essayed to traduce me publicly, I have been moved to commit these things to the press, in order that all may be enabled to form an opinion both of me and my labours…

CHAPTER II

OF THE MOTIONS OF THE HEART, AS SEEN IN THE DISSECTION OF LIVING ANIMALS.

In the first place, then, when the chest of a living animal is laid open and the capsule that immediately surrounds the heart is slit up or removed, the organ is seen now to move, now to be at rest; there is a time when it moves, and a time when it is motionless…

In the motion, and interval in which this is accomplished, three principal circumstances are to be noted:

1. That the heart is erected, and rises upwards to a point, so that at this time it strikes against the breast and the pulse is felt externally.

2. That it is everywhere contracted, but more especially towards the sides, so that it looks narrower, relatively longer, more drawn together. The heart of an eel taken out of the body of the animal and placed upon the table or the hand, shows these particulars; but the same things are manifest in the heart of small fishes and of those colder animals where the organ is more conical or elongated.

3. The heart being grasped in the hand, is felt to become harder during its action. Now this hardness proceeds from tension, precisely as when the forearm is grasped, its tendons are perceived to become tense and resilient when the fingers are moved…

From these particulars it appeared evident to me that the motion of the heart consists in a certain universal tension both contraction in the line of its fibres, and constriction in every sense. It becomes erect, hard, and of diminished size during its action; the motion is plainly of the same nature as that of the muscles when they contract in the line of their sinews and fibres; for the muscles, when in action, acquire vigour and tenseness, and from soft become hard, prominent and thickened: in the same manner the heart.

We are therefore authorized to conclude that the heart, at the moment of its action, is at once constricted on all sides, rendered thicker in its parietes and smaller in its ventricles, and so made apt to project or expel its charge of blood. This, indeed, is made sufficiently manifest by the fourth observation preceding, in which we have seen that the heart, by squeezing out the blood it contains becomes paler, and then when it sinks into repose and the ventricle is filled anew with blood, that the deeper crimson colour returns. But no one need remain in doubt of the fact, for if the ventricle be pierced the blood will be seen to be forcibly projected outwards upon each motion or pulsation when the heart is tense.

These things, therefore, happen together or at the same instant: the tension of the heart, the pulse of its apex, which is felt externally by its striking against the chest, the thickening of its parietes, and the forcible expulsion of the blood it contains by the constriction of its ventricles.

Hence the very opposite of the opinions commonly received, appears to be true; inasmuch as it is generally believed that when the heart strikes the breast and the pulse is felt without, the heart is dilated in its ventricles and is filled with blood; but the contrary of this is the fact, and the heart, when it contracts [and the shock is given], is emptied. Whence the motion which is generally regarded as the diastole of the heart, is in truth its systole. And in like manner the intrinsic motion of the heart is not the diastole but the systole; neither is it in the diastole that the heart grows firm and tense, but in the systole, for then only, when tense, is it moved and made vigorous.

Go back to the main Story of Science page.